Effect of Pneumoperitoneum on Oxidative Stress and Inflammation via the Arginase Pathway in Rats
نویسندگان
چکیده
PURPOSE Oxidative stress during CO₂ pneumoperitoneum is reported to be associated with decreased bioactivity of nitric oxide (NO). However, the changes in endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and arginase during CO₂ pneumoperitoneum have not been elucidated. MATERIALS AND METHODS Thirty male Sprague-Dawley rats were randomized into three groups. After anesthesia induction, the abdominal cavities of the rats of groups intra-abdominal pressure (IAP)-10 and IAP-20 were insufflated with CO₂ at pressures of 10 mm Hg and 20 mm Hg, respectively, for 2 hours. The rats of group IAP-0 were not insufflated. After deflation, plasma NO was measured, while protein expression levels and activity of eNOS, iNOS, arginase (Arg) I, and Arg II were analyzed with aorta and lung tissue samples. RESULTS Plasma nitrite concentration and eNOS expression were significantly suppressed in groups IAP-10 and IAP-20 compared to IAP-0. While expression of iNOS and Arg I were comparable between the three groups, Arg II expression was significantly greater in group IAP-20 than in group IAP-0. Activity of eNOS was significantly lower in groups IAP-10 and IAP-20 than in group IAP-0, while iNOS activity was significantly greater in group IAP-20 than in groups IAP-0 and IAP-10. Arginase activity was significantly greater in group IAP-20 than in groups IAP-0 and IAP-10. CONCLUSION The activity of eNOS decreases during CO₂ pneumoperitoneum, while iNOS activity is significantly increased, a change that contributes to increased oxidative stress and inflammation. Moreover, arginase expression and activity is increased during CO₂ pneumoperitoneum, which seems to act inversely to the NO system.
منابع مشابه
Erratum to: The effects of arginase inhibitor on lung oxidative stress and inflammation caused by pneumoperitoneum in rats
BACKGROUND Pneumoperitoneum-induced oxidative stress and organ injury are known to be associated with nitric oxide (NO) inactivation. Because arginase competes with NO synthase (NOS) for a common substrate, L-arginine, arginase inhibition may increase NO bioavailability. Therefore, we evaluated the ability of the arginase inhibitor, 2 (S)-amino-6-boronohexanoic acid (ABH), to attenuate pneumope...
متن کاملThe effects of arginase inhibitor on lung oxidative stress and inflammation caused by pneumoperitoneum in rats
Background: Pneumoperitoneum-induced oxidative stress and organ injury are known to be associated with nitric oxide (NO) inactivation. Because arginase competes with NO synthase (NOS) for a common substrate, L-arginine, arginase inhibition may increase NO bioavailability. Therefore, we evaluated the ability of the arginase inhibitor, 2 (S)-amino-6-boronohexanoic acid (ABH), to attenuate pneumop...
متن کاملGinkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway
Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blo...
متن کاملBiological effect of di (p-methylbenzoyl) diselenide (in vitro) and its acute hepatotoxicity on rats (in vivo)
Selenium plays an important role in biological system due to its incorporation in glutathione peroxidases and thioredoxin reductase as prosthetic group, the pharmacological studies of synthetic organoseleno-compounds revealed these molecules to be used as antioxidants, enzyme inhibitors, neuroprotectors, antitumor, anti-infectious agents, cytokine inducers and immuno-modulators. The present stu...
متن کاملBiological effect of di (p-methylbenzoyl) diselenide (in vitro) and its acute hepatotoxicity on rats (in vivo)
Selenium plays an important role in biological system due to its incorporation in glutathione peroxidases and thioredoxin reductase as prosthetic group, the pharmacological studies of synthetic organoseleno-compounds revealed these molecules to be used as antioxidants, enzyme inhibitors, neuroprotectors, antitumor, anti-infectious agents, cytokine inducers and immuno-modulators. The present stu...
متن کامل